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Abstract. An analysis of the Coulombic amplitude and its interference with the nuclear amplitude which
is driven by the three-component pomeron is presented. It is shown that different approaches towards the
evaluation of the Coulomb phase give approximately uniform results at all energies and the differences
are negligible at RHIC and LHC energies. We show that the use of the amplitude which was fitted to
accommodate the nucleon data only (in the region 0.01 ≤ |t| ≤ 14.5 (GeV2)), combined with the Coulomb
amplitude, reproduces the existing data in the Coulomb interference domain quite accurately without any
adjustment of the parameters. As a consequence, we predict the differential cross section in the region of
the Coulomb nucleon interference for both RHIC and LHC energies.

1 Introduction

In [1] an eikonal model of a three-component pomeron
has been suggested and successfully used for describing
the high energy pp and p̄p data in the region of large mo-
mentum transfer 0.01 ≤ |t| ≤ 14.5 (GeV2). In this paper
we apply this model to the region of small momentum
transfer 0 ≤ |t| ≤ 0.01 (GeV2).

The problem is a proper account of the Coulomb in-
teraction which is most important at the smallest |t|. The
standard way to do this is to represent the whole scatter-
ing amplitude T (s, t) which is dominated by the Coulomb
force at low momentum transfer and by the hadronic force
at higher momentum transfer as

T (s, t) = TN(s, t) + eiαΦTC(s, t), (1)

where, if we normalize the scattering amplitude so that

dσ

dt
=

|T (s, t)|2
16πs2 , (2)

the Born Coulomb amplitude for pp and p̄p scattering is

TC(s, t) = ∓8παs

|t| . (3)

The upper (lower) sign corresponds to the scattering of
particles with the same (opposite) charges. TN(s, t) stands
for purely strong-interaction amplitude, and the phase
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Φ depends generally on energy, the momentum transfer
and on the properties of TN. The study of the Coulomb–
nuclear interference is very important for extracting the
real part of the strong-interaction amplitude.

The issue of the Coulombic amplitude and its interfer-
ence with the nuclear component was addressed in many
papers in the past. West and Yennie [2] examined the
Coulomb–nuclear interference using Feynman diagrams.
Cahn [3] considered the same task in the framework of the
eikonal model; his results were quite convincing (though
the modifications were very small compared to [2]) and
proved that the eikonal model is a very convenient basis
for analyzing the Coulomb–nuclear interference. The role
of the anomalous magnetic moment of the nucleon and its
influence on the extraction of the ρ values for pp and p̄p
scattering was addressed in [4].

The Coulombic phase has attracted the attention of
many authors. Using the WKB approach in potential the-
ory, Bethe [5] derived, for proton–nucleus scattering, the
expression

Φ = 2 ln(1.06/|�k1|bΘ), (4)

where |�k1| is the c.m. momentum, b is the range of the
strong-interaction forces defined by the size of the nucleus,
and Θ the c.m. scattering angle. Similar results were de-
rived within potential theory by several authors [6,7].

A relativistic derivation of the phase was attempted
by Soloviev [8], who obtained

Φ = 2 ln(2/Θ), (5)

a result which differs considerably from the result of Bethe
[5]. Utilizing the same technique, Rix and Thaler [9] de-
rived a result quantitatively close to that of Bethe [5].
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West and Yennie [2], as already mentioned, obtained
the phase of the Coulomb–nuclear interference using Feyn-
man diagrams. For a conventional parametrization,
TN(s, t) ∼ exp(−B|t|/2), the result of West and Yennie
[2] reads

ΦW−Y = ∓ [ln(B|t|/2) + γ + O(B|t|)] , (6)

where γ = 0.577 · · · is Euler’s constant. The upper (lower)
sign corresponds to the scattering of pp (p̄p).

Cahn [3] analyzed also the effect of the electromag-
netic form factor and obtained a general expression for
the phase. The results of [3] were in complete agreement
with [2] and especially the formula (6) was derived from
a rather different perspective.

The main difference from the result [2] is a shift of the
Coulomb amplitude due to the form factor’s influence on
the phase. If we introduce the electromagnetic form factor
of the proton, the Born term of the Coulomb amplitude
has the following form:

TC(s, t) = ∓8παs

|t| f2(|t|), (7)

where the form factor may be chosen as

f(|t|) = e−2|t|/Λ2
, Λ2 = 0.71 GeV2. (8)

In this case the Coulomb phase has the following form:

ΦCahn = ∓
[
ln

(
B|t|
2

)
+ γ + ln

(
1 +

8
BΛ2

)

+(4|t|/Λ2) ln(4|t|/Λ2) + 2|t|/Λ2] . (9)

All these results were obtained under the assumption
that |t| → 0. The derivation of the phase in a large do-
main of momentum transfer was attempted by Selyugin
[10], and Kopeliovich and Tarasov [13]. In the region of
interest for the present paper 0 ≤ |t| ≤ 0.01 GeV2, the
latter results are similar to that of Cahn [3] and the main
difference is in the dip region of the differential cross sec-
tions. The phase obtained in [10] accurately takes into
account the dipole form factor

f(|t|) =
[

Λ2

Λ2 + |t|
]2

, Λ2 = 0.71 GeV2, (10)

and the complicated structure of the nucleon amplitude.
The phase has the following form:

ΦSelyugin = ∓
[
ln

|t|
4

+ 2γ − νs

− i
8πs

TN(s, t)

∫ ∞

0
bdbJ0(b

√−t)δC(s, b)

×
(
e2iδN(s,b) − 1

)]
, (11)

where
νs = 0.11 log(1 + 400|t|) (12)

takes into account the influence of the form factor on the
pure Coulombic phase, and

δC(s, b) = ln b + K0(bΛ) +
11
12

bΛK1(bΛ)

+
5
24

b2Λ2K0(bΛ) +
1
48

b3Λ3K1(bΛ). (13)

The prescription of West and Yennie [2] was success-
fully used by several authors [11,12] for describing differ-
ential cross sections in the low t region.

In what follows we will investigate four different cases
of the Coulomb phase – the phase calculated with the nu-
cleon amplitude of the model [1] (which does not acquire
any additional parameters) with the prescription of West
and Yennie [2], the phase calculated with the prescrip-
tion of Cahn [3], the prescription of Selyugin [10], and the
phase equal to zero.

2 The nuclear amplitude

We believe that any nuclear amplitude that is capable of a
high accuracy description of the combined set of high en-
ergy pp and p̄p data (total and differential cross sections,
ρ parameter etc.) over the entire |t| spectrum, if properly
combined with the correct Coulomb amplitude must ac-
count well for the data in the interference region. That this
is so we will prove using the particular nuclear amplitude
which has been derived in [1] to describe the total and
differential cross sections at high energies (

√
s ≥ 10 GeV)

in the range of momentum transfer 0.01 < |t| < 14.5 GeV2

using the eikonal approach (another one could have been
the amplitude of [14]). We just write the nuclear ampli-
tude of [1]

T (s,�b) =
e2iδ(s,�b) − 1

2i
, (14)

where the eikonal has the following form:

δp̄p
pp(s, b) = δ+

P1
(s, b) + δ+

P2
(s, b) + δ+

P3
(s, b) ∓ δ−

O
(s, b)

+ δ+
f (s, b) ∓ δ−

ω (s, b). (15)

We refer the reader to the original literature for details;
let us simply recall that here δ+

P1,2,3
(s, b) are pomeron con-

tributions. The superscript “+” denotes C even trajec-
tories (the pomeron trajectories have quantum numbers
0+J++), while “−” denotes C odd trajectories. δ−

O
(s, b) is

the odderon contribution (i.e. the C odd partner of the
pomeron whose quantum numbers are 0−J−−); δ+

f and
δ−
ω (s, b) are the contributions of secondary reggeons (f

being a representative of the C = +1 families and ω of
the C = −1 ones).

In order to relate t- and b-spaces one proceeds via
Fourier–Bessel transforms:

f̂(t) = 4πs

∫ ∞

0
db2J0(b

√−t)f(b) ,

f(b) =
1

16πs

∫ 0

−∞
dtJ0(b

√−t)f̂(t) . (16)
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Using this parametrization we obtain the following ex-
pressions for the Coulomb phase:

ΦW−Y = ∓
∑

i δi(s, t = 0)
[
ln

(
ρi(s)|t|

4

)
+ γ

]
∑

i δi(s, t = 0)
, (17)

and

ΦCahn

= ∓
∑

i δi(s, t = 0)
[
ln

(
ρi(s)|t|

4

)
+ γ + ln

(
1 + 16

ρi(s)Λ2

)]
∑

i δi(s, t = 0)

∓(4|t|/Λ2) ln(4|t|/Λ2) ∓ 2|t|/Λ2, (18)

where ρ2
i = 4α′

i(0) ln s/s0 + r2
i , i = P1, P2, P3, O, f, ω. The

upper (lower) signs correspond to pp (p̄p).
Crossing symmetry is restored by replacing s →

se−iπ/2. We introduce the dimensionless variable

s̃ =
s

s0
e−i π

2 , (19)

in terms of which we give each C+ and C− contribution
with its appropriate signature factor in the form

δ+(s, b) = i
c

s0
s̃α(0)−1 e− b2

ρ2

4πρ2 ,

ρ2 = 4α′(0) ln s̃ + r2 ,

(C = +1) ; (20)

δ−(s, b) =
c

s0
s̃α(0)−1 e− b2

ρ2

4πρ2 ,

ρ2 = 4α′(0) ln s̃ + r2 ,

(C = −1) . (21)

One might imagine that a simple Gaussian form of the
eikonal, (20), does not account for the complexity of the
data, especially in the high |t| region. Indeed in [1] we
have found that an appropriate pomeron eikonal may be
constructed as a sum of three terms,

∑
i=1,2,3 δ+

i (s, b), and
the resulting amplitude gives a good agreement with the
experimental data.

3 Results

In [1], the adjustable parameters have been fitted over a
set of 982 pp and p̄p data1 of both forward observables
(total cross sections σtot, and the ρ, the ratios of real to
imaginary parts of the amplitudes) in the range 8. ≤ √

s ≤
1800. GeV and angular distributions (dσ

dt ) in the ranges
23. ≤ √

s ≤ 1800. GeV, 0.01 ≤ |t| ≤ 14. GeV2. A good
χ2/d.o.f. = 2.60 was obtained and the parameters are
given in Table 1.

1 The data are available at
REACTION DATA Database
http://durpdg.dur.ac.uk/hepdata/reac.html
CROSS SECTIONS PPDS database
http://wwwppds.ihep.su:8001/c5-5A.html
http://pdg.lbl.gov/2000/contents−plots.html

Table 1. Parameters obtained in [1]

Pomeron1 f -Reggeon

∆P1 0.0578 ± 0.0020 ∆f −0.31 (FIXED)
cP1 53.007 ± 0.795 cf 191.69 ± 2.12
α′

P1 0.5596 ± 0.0078 (GeV−2) α′
f 0.84 (GeV−2) (FIXED)

r2
P1 6.3096 ± 0.2522 (GeV−2) r2

f 31.593 ± 1.099 (GeV−2)

Pomeron2 ω-Reggeon

∆P2 0.1669 ± 0.0012 ∆ω −0.53 (FIXED)
cP2 9.6762 ± 0.1600 cω −174.18 ± 2.72
α′

P2 0.2733 ± 0.0056 (GeV−2) α′
ω 0.93 (GeV−2) (FIXED)

r2
P2 3.1097 ± 0.1817 (GeV−2) r2

ω 7.467 ± 1.083 (GeV−2)

Pomeron3

∆P3 0.2032 ± 0.0041 s0 1.0 (GeV2) (FIXED)
cP3 1.6654 ± 0.0669
α′

P3 0.0937 ± 0.0029 (GeV−2)
r2

P3 2.4771 ± 0.0964 (GeV−2)

Odderon

∆O 0.19200 ± 0.0025
cO 0.0166 ± 0.0022
α′

O 0.048 ± 0.0027 (GeV−2)
r2

O 0.1398 ± 0.0570 (GeV−2)

We now consider the complete set of data including
the Coulomb region which consists of 2158 data2. To these
data, we apply the model including the Coulomb part with
its phase and we simply plot the physical quantities with-
out any additional fitting.

The total cross sections and the ratios of real to imag-
inary parts of the forward amplitudes are presented in
Figs. 1 and 2.

In order to compare the different approaches to the
Coulomb phase, we have calculated the χ2 for the region
of low |t| : 0 ≤ |t| ≤ 0.01 (GeV2) in four different cases:

(1) the Coulomb phase is equal to zero;
(2) the Coulomb phase is calculated with the prescription

of West and Yennie (17);
(3) the Coulomb phase is calculated with the prescription

of Cahn (18);
(4) the Coulomb phase is calculated with the prescription

of Selyugin (11).

The results may be found in Table 2.
As is seen from Table 2, the experimental data mar-

ginally “prefer” the Coulomb phase calculated with the
prescription of Cahn [3] and Selyugin [10] over that of

2 The data are available at
REACTION DATA Database
http://durpdg.dur.ac.uk/hepdata/reac.html
CROSS SECTIONS PPDS database
http://wwwppds.ihep.su:8001/c5-5A.html
http://pdg.lbl.gov/2000/contents−plots.html
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Fig. 1. Total cross sections of pp scattering (hollow circles)
and p̄p scattering (full circles) and corresponding curves in the
model of [1]

Table 2. χ2 per point for the region of low |t| : 0 ≤ |t| ≤
0.01 (GeV2)

Coulomb phase Number of points χ2 per point

Φ = 0 604 3.49
ΦW−Y (17) 604 2.09
ΦCahn (18) 604 1.86
ΦSelyugin (11) 604 1.84

West and Yennie but taking the Coulomb phase equal
to zero is excluded by the data and this is gratifying on
physical grounds. The difference between the phases of [3]
and [10] is negligible in the small |t| region of interest (as
may be seen in Fig. 3), though the exact result obtained
in [10] over the whole kinematical region of |t| shows that
the difference is large in the region of the diffractive dip
(as seen in Fig. 4).

Apart from this, the Coulomb phase calculated in the
Selyugin approach exhibits a non-trivial behavior of the
real part (which has a zero in the point of the diffractive
dip), and of the imaginary part (which has a minimum in
the same point); see Fig. 4.

The difference between the approaches of Cahn [3] and
of West and Yennie [2] is more pronounced even in the
region of low t as may be seen in Fig. 3.

It is of some interest to perform a more detailed com-
parison of the χ2 derived for the region of low momentum
transfer. This can be found in Table 3 for ΦW−Y, ΦCahn,
and ΦSelyugin.

With all due caution, a general pattern emerges; some
data points have anomalously large χ2 values and these
are the same in all cases.
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Fig. 2. Ratios of the real to the imaginary part of the forward
pp scattering amplitudes (hollow circles) and p̄p scattering am-
plitudes (full circles) and corresponding curves in the model
of [1]

The p̄p differential cross section at
√

s = 546 GeV, for
instance, sticks out conspicuously. The explanation is the
normalization of the cross section. The systematical error
allows us to change the normalization of the data in the
±10% corridor. If we could multiply our predictions by a
factor 1.06, we would have a good description of this set
of data, as is seen in Figs. 5 and 6.

To appreciate the role of the Coulomb phase, we plot
the angular distributions with the appropriate Coulomb
phase and with the phase taken equal to zero in Figs. 7 and
8. Even though the difference is minimal, the numerical
conclusion is that the data, quite unambiguously, prefer
the appropriate non-zero Coulomb phase.

The comparison with the West–Yennie and Cahn
phases is not shown because the plot would be indistin-
guishable from the Selyugin one.

Let us recall that no additional fitting was done.
We do not report here any of the pp and p̄p angular

distributions which one obtains over the full range of |t|
values because the original reproduction of these quanti-
ties is left basically unchanged by the Coulomb amplitude
and the interested reader is referred to the original paper
[1]. We simply report here, for completeness, the predic-
tions at RHIC and LHC energies both in the interference
region and over the entire |t| range. Predictions of the
model and a comparison with the nuclear amplitude for
RHIC and LHC are shown in Figs. 9, 10, 11 and 12.

To show the influence of the interference between nu-
cleon and Coulomb amplitudes we show the ratio

R =

∣∣∣dσ
dt − dσnucleon

dt − dσCoulomb
dt

∣∣∣
dσ
dt

[%] (22)
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Table 3. χ2 per point for the region of low |t| : 0 ≤ |t| ≤ 0.01 (GeV2) for ΦW−Y,
ΦCahn, and ΦSelyugin

Data
√

s (GeV) 0 ≤ |t| ≤ 0.01 (GeV2) χ2/ntot χ2/ntot χ2/ntot
#points, ntot ΦW−Y ΦCahn ΦSelyugin

1 σp̄p
total 33 0.7167 0.7167 0.7167

2 σpp
total 68 0.3617 0.3617 0.3617

3 ρp̄p 11 0.6086 0.6086 0.6086
4 ρpp 48 0.4326 0.4326 0.4326

5 dσ
dt

p̄p 24.3 26 1.4965 2.4879 2.8105
6 dσ

dt

p̄p 30.4 21 1.4702 1.4130 1.4027
7 dσ

dt

p̄p 52.6 12 1.9847 1.4676 1.3440
8 dσ

dt

p̄p 62.3 3 1.0263 0.8135 0.7635
9 dσ

dt

p̄p 541.0 37 2.0811 2.3993 2.5246
10 dσ

dt

p̄p 546.0 15 11.4692 11.0364 10.9008

11 dσ
dt

pp 10.6 35 2.3342 2.0297 1.9610
12 dσ

dt

pp 12.3 37 1.5731 1.4169 1.3931
13 dσ

dt

pp 19.4 45 1.9674 1.7840 1.7509
14 dσ

dt

pp 22.2 45 1.4666 1.3374 1.3192
15 dσ

dt

pp 23.9 94 2.3910 2.3699 2.3087
16 dσ

dt

pp 24.3 25 1.1418 1.2638 1.3587
17 dσ

dt

pp 27.4 40 2.2246 2.0014 1.9607
18 dσ

dt

pp 30.7 8 0.3174 1.2071 1.5482
19 dσ

dt

pp 44.7 25 5.0147 2.9964 2.7679
20 dσ

dt

pp 52.8 21 7.1074 4.2590 3.9018
21 dσ

dt

pp 62.3 4 8.5177 6.7054 6.2988
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Fig. 3. The Coulomb phase calculated in the framework of
Selyugin [10] (solid line) and of Cahn [3] (dotted line) and of
West and Yennie [2] (the dashed line) in the region of small t.√

s = 52.8 GeV

Fig. 4. The Coulomb phase calculated in the framework of
Selyugin [10], real part (solid line) and imaginary part (dashed
line) and in that of Cahn [3] (dotted line) in the region of high
t
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Fig. 6. The same as in Fig. 5 for low t
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Fig. 8. Differential cross section of p̄p scattering and curves
corresponding to its description in the model. The solid line
corresponds to the Coulomb phase calculated with the pre-
scription of Selyugin (11) and the dashed line corresponds to
the zero phase
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Fig. 10. Prediction of the model for the pp scattering differ-
ential cross section at RHIC (

√
s = 100 GeV). The solid line

corresponds to the full amplitude including the Coulombic one
and the dashed line corresponds to the nuclear amplitude [1]
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Fig. 11. Prediction of the model for the pp scattering differ-
ential cross section at RHIC (

√
s = 500 GeV). The solid line

corresponds to the full amplitude including the Coulombic one
and the dashed line corresponds to the nuclear amplitude [1]

Fig. 12. Prediction of the model for the pp scattering dif-
ferential cross section at LHC (

√
s = 14 TeV). The solid line

corresponds to full amplitude including Coulombic one and the
dashed line corresponds to the nuclear amplitude [1]
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Fig. 13. The interference term between hadron and Coulomb
amplitudes for at the RHIC energy. The dashed line corre-
sponds to the Coulomb phase calculated with the prescription
of Selyugin [10] and the dotted line to the zero Coulomb phase

Fig. 14. The interference term between hadron and Coulomb
amplitudes at the LHC energy. The dashed line corresponds to
the Coulomb phase calculated with the prescription of Selyugin
[10] and the dotted line to the zero Coulomb phase
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Fig. 15. The position of the zero of the real part of the scatter-
ing amplitude in a three-component pomeron model [1] (solid
line) and in a “geometrical scaling” model tzero = −1/(λ ln s),
λ = 0.25 GeV−2 [15] (dashed line)

Fig. 16. The real part of the scattering amplitude at the LHC
energy in the model of [1]
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in Figs. 13 and 14 and we conclude that the interference
term becomes negligible at RHIC and LHC energies at
t ∼ −0.01 GeV2 for RHIC and t ∼ −0.005 GeV2 for LHC.

Now let us return to the problem of extracting the
ratio ρ(s, t = 0) of the real to the imaginary parts of the
scattering amplitude. A general theorem [15] shows that
this ratio as a function of the momentum transfer could
not have a constant sign in a strip sM < s < ∞, −T < t ≤
0, for any sM and T > 0. The method of extracting the
ratio includes a simplification; the scattering amplitude is
usually presented in the following form:

T (s, t) = ∓8παs

|t| f2(|t|)

+(i + ρ(s, 0))sσtoteBt(1 − iαΦ), (23)

where the ratio ρ(s, t) is approximated by its value at t =
0. Should this simplification affect the measurement? The
answer would be “yes” should the change of sign of ρ occur
close to the region of the maximum of the Coulomb nuclear
interference.

In our particular model, the zero of the real part of
the scattering amplitude goes to zero with the increase
of energy, but remains far from the region of the max-
imum of the interference. For example, at LHC energies√

s = 14 TeV, the maximum occurs at |tmax| ∼ 10−3 GeV2

(see Fig. 14) while the zero is at |tzero| ∼ 0.16 GeV2 (see
Figs. 15 and 16), so the situation is not too bad.

4 Conclusion

All three choices for the Coulomb phase give a good de-
scription of the existing data; in terms of χ2 per point
the phases calculated with the prescriptions of Cahn [3]
(18) and Selyugin [10] (11) give us a slightly better χ2

(about 10% less than that of the phase calculated with
the prescription of West and Yennie [2]). The experimental
data, however, have a similar accuracy; therefore, we re-
frain from deriving the conclusion that the former phases
are more accurate than the latter. We conclude that such
prescriptions are a good basis for the evaluation of the
Coulombic contribution in the full scattering amplitude.
We expect that a similar conclusion would apply to an
analysis repeated along the lines of [13], but we have not
performed this analysis.

A further analysis of the problem, using other models
for the hadronic amplitudes, might help to confirm our
conclusions and to make them model independent.

As we have seen, the addition of the nuclear amplitude
(with parameters fitted from total and differential cross
sections) and of the Coulomb one (with its proper phase)
is necessary to obtain a total amplitude which reproduces
quite well the data in the interference region without any
additional parameters and with no need to refit existing
ones.

This allows us to predict the RHIC Coulomb inter-
ference which requires the measurements to start from
|t| ≤ 0.005 GeV2 at the energy of

√
s = 100 GeV and

from |t| ≤ 0.004 GeV2 at the energy of
√

s = 500 GeV.
Likewise, LHC will be able to cover the Coulomb region
if the measurement starts from |t| ≤ 0.001 GeV2.
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